Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732182

RESUMO

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Interferência de RNA
2.
Nat Commun ; 15(1): 3623, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684703

RESUMO

Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3ß-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3ß-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3ß-tigloyloxytropane synthase (TS), catalyzes 3ß-tropanol and tigloyl-CoA to form 3ß-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3ß-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3ß-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3ß-tigloyloxytropane from tiglic acid and 3ß-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3ß-tigloyloxytropane.


Assuntos
Aciltransferases , Mitocôndrias , Tropanos , Aciltransferases/metabolismo , Aciltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia , Tropanos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutagênese Sítio-Dirigida
3.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522709

RESUMO

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Assuntos
Atropa belladonna , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista , Nitrogênio , Tropanos , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Atropa belladonna/metabolismo , Atropa belladonna/genética , Tropanos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Hiosciamina/metabolismo , Hiosciamina/genética , Escopolamina/metabolismo , Regiões Promotoras Genéticas
4.
Phytomedicine ; 128: 155371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518649

RESUMO

BACKGROUND: Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE: The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS: The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS: DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION: This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.


Assuntos
Irinotecano , Lactonas , Antígeno 96 de Linfócito , Mucosite , Sesquiterpenos , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Camundongos , Lactonas/farmacologia , Humanos , Antígeno 96 de Linfócito/metabolismo , Masculino , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1 , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
5.
J Agric Food Chem ; 72(14): 7749-7764, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537104

RESUMO

Fusarium wilt is a severe fungal disease caused by Fusarium oxysporum in sweet potato. We conducted transcriptome analysis to explore the resistance mechanism of sweet potato against F. oxysporum. Our findings highlighted the role of scopoletin, a hydroxycoumarin, in enhancing resistance. In vitro experiments confirmed that scopoletin and umbelliferone had inhibitory effects on the F. oxysporum growth. We identified hydroxycoumarin synthase genes IbF6'H2 and IbCOSY that are responsible for scopoletin production in sweet potatoes. The co-overexpression of IbF6'H2 and IbCOSY in tobacco plants produced the highest scopoletin levels and disease resistance. This study provides insights into the molecular basis of sweet potato defense against Fusarium wilt and identifies valuable genes for breeding wilt-resistant cultivars.


Assuntos
Fusarium , Ipomoea batatas , Ipomoea batatas/genética , Escopoletina/farmacologia , Fusarium/genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia
6.
Plant Physiol Biochem ; 208: 108439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408396

RESUMO

Putrescine, produced via the arginine decarboxylase (ADC)/ornithine decarboxylase (ODC)-mediated pathway, is an initial precursor for polyamines metabolism and the root-specific biosynthesis of medicinal tropane alkaloids (TAs). These alkaloids are widely used as muscarinic acetylcholine antagonists in clinics. Although the functions of ODC in biosynthesis of polyamines and TAs have been well investigated, the role of ADC is still poorly understood. In this study, enzyme inhibitor treatment showed that ADC was involved in the biosynthesis of putrescine-derived metabolites and root growth in Atropa belladonna. Further analysis found that there were six ADC unigenes in the A. belladonna transcriptome, with two of them, AbADC1 and AbADC2, exhibiting high expression in the roots. To investigate their roles in TAs/polyamines metabolism and root growth, RNA interference (RNAi) was used to suppress either AbADC1 or AbADC2 expression in A. belladonna hairy roots. Suppression of the AbADC1 expression resulted in a significant reduction in the putrescine content and hairy root biomass. However, it had no noticeable effect on the levels of N-methylputrescine and the TAs hyoscyamine, anisodamine, and scopolamine. On the other hand, suppression of AbADC2 expression markedly reduced the levels of putrescine, N-methylputrescine, and TAs, but had no significant effect on hairy root biomass. According to ß-glucuronidase (GUS) staining assays, AbADC1 was mainly expressed in the root elongation and division region while AbADC2 was mainly expressed in the cylinder of the root maturation region. These differences in expression led to functional divergence, with AbADC1 primarily regulating root growth and AbADC2 contributing to TA biosynthesis.


Assuntos
Alcaloides , Atropa belladonna , Carboxiliases , Atropa belladonna/genética , Atropa belladonna/metabolismo , Putrescina/metabolismo , Tropanos/metabolismo
7.
Research (Wash D C) ; 6: 0276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034083

RESUMO

Non-alcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), is a leading cause of cirrhosis and liver cancer worldwide; nevertheless, there are no Food and Drug Administration-approved drugs for treating NASH until now. Peroxisome proliferator-activated receptor alpha (PPARα) is an interesting therapeutic target for treating metabolic disorders in the clinic, including NASH. Herpetrione, a natural lignan compound isolated from Tibetan medicine Herpetospermum caudigerum, exerts various hepatoprotective effects, but its efficacy and molecular mechanism in treating NASH have not yet been elucidated. Here, we discovered that herpetrione lessened lipid accumulation and inflammation in hepatocytes stimulated with oleic acid and lipopolysaccharide, and effectively alleviated NASH caused by a high-fat diet or methionine-choline-deficient diet by regulating glucolipid metabolism, insulin resistance, and inflammation. Mechanistically, RNA-sequencing analyses further showed that herpetrione activated PPAR signaling, which was validated by protein expression. Furthermore, the analysis of molecular interactions illustrated that herpetrione bound directly to the PPARα protein, with binding sites extending to the Arm III domain. PPARα deficiency also abrogated the protective effects of herpetrione against NASH, suggesting that herpetrione protects against hepatic steatosis and inflammation by activation of PPARα signaling, thereby alleviating NASH. Our findings shed light on the efficacy of a natural product for treating NASH, as well as the broader prospects for NASH treatment by targeting PPARα.

8.
Braz J Microbiol ; 54(4): 2991-3003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921953

RESUMO

Endophytic bacteria play important roles in medicinal plant growth, abiotic stress, and metabolism. Mirabilis himalaica (Edgew.) Heimerl is known for its medicinal value as Tibetan traditional plant; however, little is known about the endophytic bacteria associated with this plant in different geographic conditions and vegetal tissues. To compare the endophytic bacterial community associated with this plant in different geographic conditions and vegetal tissues, we collected the leaves, stems, and roots of M. himalaica from five locations, Nongmu college (NM), Gongbujiangda (GB), Zhanang County (ZL), Lang County (LX), and Sangri County (SR), and sequenced the 16S rRNA V5-V7 region with the Illumina sequencing method. A total of 522,450 high-quality sequences and 4970 operational taxonomic units (OTUs) were obtained. The different tissues from different locations harbored unique bacterial assemblages. Proteobacteria and Actinobacteria were the dominant phyla in all the samples, while the dominant genera changed based on the different tissues. The endophytic bacterial structures in the leaf and stem tissues were different compared to root tissues. Redundancy analysis (RDA) showed that the endophytic bacterial community was significantly correlated with pH, available phosphorus (AP), total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM). These findings suggested that the geographic conditions, climate type, ecosystem type, and tissues determined the endophytic bacterial composition and relative abundances. This conclusion could facilitate an understanding of the relationship and ecological function of the endophytic bacteria associated with M. himalaica and provide valuable information for artificial planting of M. himalaica and identifying and applying functional endophytic bacteria.


Assuntos
Mirabilis , Plantas Medicinais , Humanos , RNA Ribossômico 16S/genética , Mirabilis/genética , Mirabilis/metabolismo , Ecossistema , Bactérias/genética , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Endófitos/genética
9.
Synth Syst Biotechnol ; 8(3): 563-564, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663064
10.
Plants (Basel) ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687296

RESUMO

Tropane alkaloids (TAs) are large secondary metabolite alkaloids that find extensive applications in the synthesis of antidotes, anesthetics, antiemetics, motion sickness drugs, and antispasmodics. The current production method primarily depends on extraction from medicinal plants of the Solanaceae family. Elicitation, as a highly effective biotechnological approach, offers significant advantages in augmenting the synthesis of secondary metabolites. The advantages include its simplicity of operation, low cost, and reduced risk of contamination. This review focuses on the impact of elicitation on the biosynthesis of TAs from three aspects: single-elicitor treatment, multiple-elicitor treatment, and the combination of elicitation strategy with other strategies. Some potential reasons are also proposed. Plant hormones and growth regulators, such as jasmonic acid (JA), salicylic acid (SA), and their derivatives, have been extensively employed in the separate elicitation processes. In recent years, novel elicitors represented by magnetic nanoparticles have emerged as significant factors in the investigation of yield enhancement in TAs. This approach shows promising potential for further development. The current utilization of multi-elicitor treatment is constrained, primarily relying on the combination of only two elicitors for induction. Some of these combinations have been found to exhibit synergistic amplification effects. However, the underlying molecular mechanism responsible for this phenomenon remains largely unknown. The literature concerning the integration of elicitation strategy with other strategies is limited, and several research gaps require further investigation. In conclusion, the impact of various elicitors on the accumulation of TAs is well-documented. However, further research is necessary to effectively implement elicitation strategies in commercial production. This includes the development of stable bioreactors, the elucidation of regulatory mechanisms, and the identification of more potent elicitors.

11.
Nat Prod Res ; : 1-9, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37282630

RESUMO

A new benzofuran-type neolignan (1), two new phenylpropanoids (2 - 3), and one new C21 steroid (4) were isolated from the ethyl acetate extract of the roots of Dolomiaea souliei by chromatographic methods, including silica gel, ODS column chromatography, MPLC, and semi-preparative HPLC. Their structures were identified as dolosougenin A (1), (S)-3-isopropylpentyl (E)-3-(4-hydroxy-3-methoxyphenyl) acrylate (2), (S)-3-isopropylpentyl (Z)-3-(4-hydroxy-3-methoxyphenyl) acrylate (3) and dolosoucin A (4) through various spectroscopic techniques including 1D NMR, 2D NMR, IR, UV, HR ESI MS, ORD, and computational ORD methods.

12.
Nat Commun ; 14(1): 1446, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922496

RESUMO

Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.


Assuntos
Alcaloides , Atropa belladonna , Hiosciamina , Solanaceae , Solanaceae/genética , Solanaceae/metabolismo , Hiosciamina/genética , Hiosciamina/metabolismo , Tropanos/metabolismo , Escopolamina/metabolismo , Atropa belladonna/genética , Atropa belladonna/metabolismo
13.
New Phytol ; 237(3): 885-899, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36271612

RESUMO

Artemisinin, a sesquiterpene lactone isolated from Artemisia annua, is in huge market demand due to its efficient antimalarial action, especially after the COVID-19 pandemic. Many researchers have elucidated that phytohormones jasmonic acid (JA) and abscisic acid (ABA) positively regulate artemisinin biosynthesis via types of transcription factors (TFs). However, the crosstalk between JA and ABA in regulating artemisinin biosynthesis remains unclear. Here, we identified a novel ABA- and JA-induced bHLH TF, AabHLH113, which positively regulated artemisinin biosynthesis by directly binding to the promoters of artemisinin biosynthetic genes, DBR2 and ALDH1. The contents of artemisinin and dihydroartemisinic acid increased by 1.71- to 2.06-fold and 1.47- to 2.23-fold, respectively, in AabHLH1113 overexpressed A. annua, whereas they decreased by 14-36% and 26-53%, respectively, in RNAi-AabHLH113 plants. Furthermore, we demonstrated that AabZIP1 and AabHLH112, which, respectively, participate in ABA and JA signaling pathway to regulate artemisinin biosynthesis, directly bind to and activate the promoter of AabHLH113. Collectively, we revealed a complex network in which AabHLH113 plays a key interrelational role to integrate ABA- and JA-mediated regulation of artemisinin biosynthesis.


Assuntos
Artemisia annua , Artemisininas , Ácido Abscísico/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Antioxidants (Basel) ; 11(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36552516

RESUMO

Acute kidney injury (AKI) is described as the abrupt decrease in kidney function always accompanied by inflammation. The roots of Oxybaphus himalaicus Edgew. have long been used in Tibetan folk medicine for the treatment of nephritis. Nevertheless, modern pharmacological studies, especially about the underlying mechanism of O. himalaicus medications, are still lacking. Here, in lipopolysaccharide (LPS)-induced RAW264.7 macrophages, the O. himalaicus extract (OE) showed significant anti-inflammatory activity with the dose dependently reducing the LPS-stimulated release of nitric oxide and the mRNA level and protein expression of inflammatory cytokines and reversed the activation of nuclear factor kappa B (NF-κB). Co-immunoprecipitation assay indicated that OE inhibited Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2) complex formation and further suppressed both myeloid differentiation factor 88 (MyD88)-dependent and TIR-domain-containing adapter-inducing interferon-ß (TRIF)-dependent cascades activation. In addition, OE could restrain NADPH oxidase 2 (NOX2) endocytosis by blocking TLR4/MD2 complex formation to prevent reactive oxygen species production. In LPS-induced AKI mice, OE treatment mitigated renal injury and inflammatory infiltration by inhibiting TLR4/MD2 complex formation. UPLC-MS/MS analysis tentatively identified 41 components in OE. Our results indicated that OE presented significant anti-inflammatory activity by inhibiting TLR4/MD2 complex formation, which alleviated LPS-induced AKI in mice.

16.
Biomed Pharmacother ; 155: 113803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271579

RESUMO

Sedum sarmentosum (Sedi Herba) has traditionally been used to treat jaundice and various types of liver disease. This study aimed to clarify the anti-cholestatic efficacy and the mechanism of S. sarmentosum ethyl acetate extract (SDEAE), as well as to screen the potential compounds with FXR activation. SDEAE effectively ameliorated ANIT-induced cholestasis in rats, as evidenced by the ameliorative histopathology of the liver and the significant decrease in biochemical markers (ALT, AST, ALP, GGT, TBIL, DBIL and TBA). The analysis of bile acid profile by LC-MS indicated that SDEAE decreased the toxic bile acid levels (TCA, TMCA and CA). Western blotting indicated that SDEAE activated FXR-associated pathway, thereby upregulating FXR, SHP, BSEP and UGT2B4 expression, and downregulating CYP7A1 and NTCP expression. Twenty-three compounds (7 nor-sesquiterpenoids, 13 flavonoids, 1 lignin, 1 sterol and 1 anthraquinone) were isolated and identified from SDEAE by comparing NMR data with the literature. The HPLC profiles of SDEAE and isolated compounds were also compared. High-content analysis showed that eight compounds (6, 7, 8, 11, 12, 13, 14 and 23) could activate FXR and compound 8 exhibited the most potent activity (p < 0.01). Molecular docking suggested that the main binding modes between these active compounds and FXR were hydrogen bonding and van der Waals forces, and compound 8 had the highest docking score 6.34. The activation of compound 8 on FXR-mediated signaling was validated in L02 cells. After siRNA down-regulation of FXR, compound 8 significantly elevated FXR, SHP, BSEP and UGT2B4 expression, and reduced CYP7A1 and NTCP expression.


Assuntos
Colestase , Sedum , Ratos , Animais , Simulação de Acoplamento Molecular , RNA Interferente Pequeno/metabolismo , Lignina/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Fígado , Ácidos e Sais Biliares/metabolismo , Flavonoides/farmacologia , Antraquinonas/farmacologia , Esteróis/metabolismo
17.
Plant Physiol Biochem ; 192: 110-119, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219994

RESUMO

Polyamines, including putrescine, spermidine, and spermine, play critical roles in cell physiology by different forms. As a rate-limiting enzyme that converts ornithine to putrescine, ornithine decarboxylase (ODC, EC 1.1.1.37) has been studied in detail in animals and microorganisms, but its specific functions are poorly understood in plants. In this study, the metabolic and developmental roles of the ODC gene were studied through RNAi-mediated suppression of the ODC gene (AbODC) in A. belladonna. Suppression of AbODC reduced the production of precursors of medicinal tropane alkaloids, including putrescine and N-methylputrescine, as well as hyoscyamine and scopolamine. In AbODC-RNAi roots, the production of putrescine and spermidine in free form was reduced, but in the AbODC-RNAi leaves, the content of free polyamines was not altered. In the roots/leaves of AbODC-RNAi plants, the production of conjugated and bound polyamines was reduced. In addition, suppression of the ODC gene resulted in reduction of polyamines and pollen sterility in AbODC-RNAi flowers. In floral organs, GUS-staining results indicated that AbODC was domainantly expressed in pollen. In summary, ornithine decarboxylase not only plays a key role in regulating the biosynthesis of diverse forms of polyamines and medicinal tropane alkaloids, but also participates in pollen development.

18.
Front Plant Sci ; 13: 973591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119570

RESUMO

The bHLH transcription factors play important roles in the regulation of plant growth, development, and secondary metabolism. ß-Caryophyllene, epi-cedrol, and ß-farnesene, three kinds of sesquiterpenes mainly found in plants, are widely used as spice in the food industry and biological pesticides in agricultural production. Furthermore, they also have a significant value in the pharmaceutical industry. However, there is currently a lack of knowledge on the function of bHLH family TFs in ß-caryophyllene, epi-cedrol, and ß-farnesene biosynthesis. Here, we found that AabHLH112 transcription factor had a novel function to positively regulate ß-carophyllene, epi-cedrol, and ß-farnesene biosynthesis in Artemisia annua. Exogenous MeJA enhanced the expression of AabHLH112 and genes of ß-caryophyllene synthase (CPS), epi-cedrol synthase (ECS), and ß-farnesene synthase (BFS), as well as sesquiterpenes content. Dual-LUC assay showed the activation of AaCPS, AaECS, and AaBFS promoters were enhanced by AabHLH112. Yeast one-hybrid assay showed AabHLH112 could bind to the G-box (CANNTG) cis-element in promoters of both AaCPS and AaECS. In addition, overexpression of AabHLH112 in A. annua significantly elevated the expression levels of AaCPS, AaECS, and AaBFS as well as the contents of ß-caryophyllene, epi-cedrol, and ß-farnesene, while suppressing AabHLH112 expression by RNAi reduced the expression of the three genes and the contents of the three sesquiterpenes. These results suggested that AabHLH112 is a positive regulator of ß-caryophyllene, epi-cedrol, and ß-farnesene biosynthesis in A. annua.

19.
BMC Genomics ; 23(1): 577, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953771

RESUMO

BACKGROUND: As a valuable medicinal plant, Rhodiola has a very long history of folk medicine used as an important adaptogen, tonic, and hemostatic. However, our knowledge of the chloroplast genome level of Rhodiola is limited. This drawback has limited studies on the identification, evolution, genetic diversity and other relevant studies on Rhodiola. RESULTS: Six Rhodiola complete chloroplast genomes were determined and compared to another Rhodiola cp genome at the genome scale. The results revealed a cp genome with a typical quadripartite and circular structure that ranged in size from 150,771 to 151,891 base pairs. High similarity of genome organization, gene number, gene order, and GC content were found among the chloroplast genomes of Rhodiola. 186 (R. wallichiana) to 200 (R. gelida) SSRs and 144 pairs of repeats were detected in the 6 Rhodiola cp genomes. Thirteen mutational hotspots for genome divergence were determined and could be used as candidate markers for phylogenetic analyses and Rhodiola species identification. The phylogenetic relationships inferred by members of Rhodiola cluster into two clades: dioecious and hermaphrodite. Our findings are helpful for understanding Rhodiola's taxonomic, phylogenetic, and evolutionary relationships. CONCLUSIONS: Comparative analysis of chloroplast genomes of Rhodiola facilitates medicinal resource conservation, phylogenetic reconstruction and biogeographical research of Rhodiola.


Assuntos
Genoma de Cloroplastos , Rhodiola , Composição de Bases , Marcadores Genéticos , Filogenia , Rhodiola/genética
20.
Genes (Basel) ; 13(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741840

RESUMO

Sweetpotato (Ipomoea batatas (L.) Lam.), which has a complex genome, is one of the most important storage root crops in the world. Sweetpotato blades are considered as a potential source of natural antioxidants owing to their high phenolic content with powerful free radical scavenging ability. The molecular mechanism of phenolic metabolism in sweetpotato blades has been seldom reported thus far. In this work, 23 sweetpotato genotypes were used for the analysis of their antioxidant activity, total polyphenol content (TPC) and total flavonoid content (TFC). 'Shangshu19' and 'Wan1314-6' were used for RNA-seq. The results showed that antioxidant activity, TPC and TFC of 23 genotypes had significant difference. There was a significant positive correlation between TPC, TFC and antioxidant activity. The RNA-seq analysis results of two genotypes, 'Shangshu19' and 'Wan1314-6', which had significant differences in antioxidant activity, TPC and TFC, showed that there were 7810 differentially expressed genes (DEGs) between the two genotypes. Phenylpropanoid biosynthesis was the main differential pathway, and upregulated genes were mainly annotated to chlorogenic acid, flavonoid and lignin biosynthesis pathways. Our results establish a theoretical and practical basis for sweetpotato breeding with antioxidant activity and phenolics in the blades and provide a theoretical basis for the study of phenolic metabolism engineering in sweetpotato blade.


Assuntos
Ipomoea batatas , Antioxidantes/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genótipo , Ipomoea batatas/genética , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...